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Abstract. The critical behaviour of directed site lattice animals having valence no larger 
than U is studied in the square lattice for the cases of U = 2 and 3 by using exact enumerations. 
We also study the cases where the microscopic restrictions are anisotropic so that the 
universality hypothesis can be tested for the systems possessing a non-trivial preferred axis. 
As expected, for both the isotropic and anisotropic restrictions, series analysis together 
with some exact results show that when U = 3 the systems have the same critical behaviour 
as the unrestricted case while for U = 2 the systems belong to the same universality class 
as directed self-avoiding walks. 

1. Introduction 

The new lattice animals models with restricted valence have been studied recently by 
Gaunt et a1 (1979, 1980) and Whittington et a1 (1979). Taking into account the effects 
of steric hindrance, those authors considered (in the case of site animals) that each 
animal vertex has valence no larger than a fixed value U. The value of U can vary from 
2 to z where z is the coordination number of the lattice. For all the lattices they studied, 
both in two and three dimensions, they found that when U 3 3 the exponent e for the 
generating function is the same as the unrestricted case ( U  = z ) ,  while when U =  2 a 
different exponent was found which is believed to be in the same universality class as the 
neighbour-avoiding walks (Fisher and Hiley 1961). 

In recent years, the critical behaviour of systems with a preferred axis has been 
the focus of many studies. It is well known that the introduction of a preferred axis 
leads to two independent correlation lengths, one parallel and the other perpendicular 
to the preferred axis (el1 and el), which diverge at the critical point with different 
exponents vIl and v,. 

The purpose of this work is to consider the restricted valence effects in the direct 
site lattice animals models. Specifically, we study the cases of U = 2 and 3 in a square 
lattice. Both the microscopically isotropic and anisotropic restrictions to the valence 
are considered. The reason that we study the anisotropic restrictions is to introduce 
a non-trivial preferred axis to the system. The explicit studies of the critical behaviour 
of such a system will enable us to test the universality hypothesis that the critical 
behaviour is independent of the direction of the preferred axis. Here, we study not 
only the exponent e of the generating function but also the correlation length exponents 
vll and vL. Generally, we use the method of exact enumerations together with the 
standard Pad6 and ratio analysis to obtain various critical exponents. In one particular 
case ( U  = 2 with anisotropic restrictions) exact results can be obtained. 
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2. Directed site animals in a square lattice with restricted valence U = 3  

First we study the critical behaviour of the fully directed site animals in a square lattice 
with maximum valence U = 3. At each animal vertex we can define uh and U, as the 
number of valences in the horizontal and vertical directions respectively. In the case 
of U = 3, the microscopic configurations at each animal vertex must satisfy the relation 
uh + U, s U = 3. Here we consider both the microscopically isotropic and anisotropic 
restrictions. For the isotropic restrictions, the allowed configurations of ( uh, U,) are 
(0, l ) ,  ( l , O ) ,  (1, l ) ,  (0,2), (2,0), (1,2) and (2, 1). In this case the preferred axis is still 
the symmetry axis (45” relative to the horizontal axis). For the anisotropic restrictions, 
the allowed configurations of uh and U, are (0, l ) ,  (1, O), (1, l ) ,  (0,2), (2,O) and (1,2) 
where the configuration (2 , l )  is not allowed. In this case the preferred axis of the 
system will be some non-trivial direction and it is interesting to see if the critical 
behaviour still remains unchanged. 

The number of directed site animals of size N, WN, is enumerated by computer. 
For each N we also calculate the averaged mean-square radii R f ( N )  and R : ( N ) .  
R f ( N )  and R : ( N )  are defined by 

where W N ( r ( i ) )  is the number of directed site animals of size N with the ith site at 
position r (  i )  from the origin 0 (Family 1980). Obviously, we have X r ( i )  WN( r (  i ) )  = WN. 
rll( i )  and ri( i )  are respectively the parallel and perpendicular projections of r( i )  to 
the preferred axis. For the anisotropic restrictions, the preferred axis of the system is 
not known. So, for each N, we define the N-dependent preferred axis as the direction 
from the origin 0 to the averaged centre of mass ( X ( N ) ,  Y ( N ) ) .  Thus, for each N, 
we also have to calculate ( X ( N ) ,  Y(N)) using formulae ( 1 )  and (2) with x ( i )  and 
y ( i )  replacing r i ( i )  and r : ( i ) .  It is expected that the preferred axis of the system is 
the infinite N limit of the N-dependent preferred axis. 

The values of WN, R I I ( N )  and R , ( N )  are given in tables 1 and 2 respectively for 
the cases of isotropic and anisotropic restrictions. It is easy to prove that the super- 
multiplicative property (Klamer 1967, Gaunt et a1 1979) for both cases is satisfied. 
Hence we expect that, for large N, WN will behave like 

W N  - N-*A N .  (3)  

I?;( N )  - N2’ll and R : ( N )  - N2”,.  (4) 

For the directed systems, when N is large, we also expect that Ri( N) and R:( N) will 
diverge with two different exponents, 

Let K be the fugacity of each animal. The generating function G and the correlation 
lengths 511 and t1 can be defined as 

W 

G ( K ) = l +  WNKN,  
N -  I 

( 5 )  

m 
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Table 1. The values of W,, R I I ( N )  and R , ( N )  for the case of u = 3  with isotropic 
restrictions. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1  
12 
13 
14 
15 
16 
17 

1 
2 
5 
13 
35 
95 
260 
716 
1986 
5542 

I5 543 
43 766 
123 646 
350 308 
994919 
2831 808 
8075 507 

O.oo00 
0.5000 
0.8563 
1.1929 
1.5119 
1.8233 
2.1284 
2.4281 
2.7215 
3.0091 
3.2914 
3.5691 
3.8425 
4.1 123 
4.3785 
4.6416 
4.9016 

O.oo00 
0.5000 
0.683 1 
0.8321 
0.9562 
1.0703 
1.1751 
1.2726 
1.3632 
1.4482 
I .5284 
1.6046 
1.6774 
1.7472 
1.8143 
1.8791 
1.9417 

Table 2. The values of WN, R I I ( N )  and R , ( N )  for the case of u = 3  with anisotropic 
restrictions. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 

1 
L 
5 
12 
28 
66 
158 
38 1 
922 
2239 
5459 

13 354 
32 759 
80 555 
198 516 
490 152 
1212 309 
3003 054 
1449 333 

O.oo00 
0.5000 
0.8563 
1.2046 
1.5584 
1.9080 
2.2473 
2.5793 
2.9063 
3.2288 
3.5461 
3.8588 
4.1670 
4.4714 
4.7720 
5.0691 
5.3629 
5.6537 
5.9417 

O.oo00 
0.5000 
0.683 1 
0.8335 
0.9673 
1.0853 
1.1901 
1.2860 
1.3754 
1.4593 
1.5383 
1.6132 
1.6846 
1.7530 
1.8186 
1.8818 
1.9430 
2.0021 
2.0595 

Near the critical fugacity K,= 1 / A ,  we expect that the above functions will behave like 

G ( K ) - ~ K , - K ~ ~ - ' ,  (8) 
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070- 

J 
0 

$ 

[f ( K ) - I K ,  - K I - 2 u l l ,  

[:( K ) - I K ,  - K 1 -*? 

(9) 

(10) 

It is known that in the directed site lattice animals the correction to scaling exponent 
flP is equal to 1 (Dhar 1982, 1983, Margolina e? a1 1983). According to the universality 
concept, we would also expect that this will be the case in the restricted model 
considered here. Thus we will use the standard Pad6 and ratio analysis (Gaunt and 
Guttmann 1974) to extract the values of 8, vll and v L  from tables 1 and 2. Since the 
generating function is only weakly singular, we actually perform the Dlog Pad6 
approximants to the first or second derivative of the generating function. These 
derivatives are also used in forming the Dlog Pad6 approximants of [f( K )  and (:( K ) .  
For the isotropic restrictions (the first derivative is used) the pole-residue plot of ( 5 )  
is shown in figure 1. The pole-residue plots of (6) and (7)  behave similarly. From 

0 5 0 - - - -  

- w i i  

1 1 I 
Kc 

0 30 
0 337 0 339 0 341 0 3L3 

Pol e 

Figure 1. Pole-residue plot for U = 3 with isotropic restrictions. The generating function 
is G(K) where the first derivative is used in the actual calculations. 

the universality concept, it is reasonable to assume that 8 has the same value 0.5 (Dhar 
1982, 1983) as in the unrestricted case. Using this assumption, we can obtain the 
biased estimate of K,  from figure 1 from which the biased estimates of vi\ and v l  can 
be obtained. If the assumption is correct, the values of VI( and v, so obtained should 
also agree with the known values of the unrestricted case. We find that the biased 
estimates of K,, vIl and vI are K ,  = 0.3400 f 0.0005 ( A  = 2.941 f 0.004), vIl = 0.821 * 0.025 
and v, = 0.494*0.025. A similar procedure is used for the case of anisotropic restric- 
tions where the second derivative of the generating function is used. By assuming 
B = 0.5, the biased estimates of K, ,  vll and v, are K ,  = 0.3929 * 0.0003 ( A  = 2.545 1 * 
0.0021), vlI = 0.832 * 0.035 and vI = 0.483 f 0.025. For both cases, the exponents v11 and 
v, found here are in good agreement with the known values of the unrestricted case; 
vIl = 0.8185 and vI = 0.5 (Nadal e? a1 1982). For the ratio analysis, we use the same 
method as used by Redner and Yang (1982). We first form the sequence A N  = 
W N /  WN-l. The values of A and 8 are estimated from the limiting values of the 
sequences NAN - ( N  - l ) A N - l  and 6,,, = N (  1 - A N / A )  respectively. To estimate the 
values of V I I  and v,, we first examine the dependence of vll( N )  and vL( N )  against N 
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on a double logarithmic scale. The values of vll( N) and v,( N) are calculated from 
the slope of successive data points. The limiting values of vII and vi are extrapolated 
from vll(  N) and vi( N) sequences by means of Neville tables. For the case of isotropic 
restrictions, we find A = 2.941 f 0.005, 8 = 0.5 I rt 0.02, vlI = 0.821 f 0.004 and v, = 
0.495i0.006. For the case of anisotropic restrictions, we find A =2.551 rt0.010, 0 = 
0.53 rt0.04, vll = 0.821 f 0.018 and vi = 0.486rt0.010. These results are consistent with 
the Pad6 analysis and both indicate that the models considered here (isotropic and 
anisotropic restrictions) being to the same universality class as the unrestricted lattice 
animals model. Again, it demonstrates that the direction of the preferred axis is 
irrelevant to the critical behaviour. 

3. Directed site animals in a square lattice with restricted valence U = 2  

In the case of U = 2 we again consider both the isotropic and anisotropic restrictions. 
For the isotropic restrictions, the allowed configurations of ( tih, U , )  are (0, l) ,  (1,0), 
( I ,  l ) ,  (0,2) and (2,O). The values of W,, Rll(N) and R , ( N )  are given in table 3. 

Table 3. The values of W,, RI,( N )  and R,( N )  for the case of U = 2 with isotropic restrictions. 

N W N  R I I ( N )  R , ( N )  

1 1 O.oo00 0.0ooo 
2 2 0.5000 0.5000 
3 5 0.8563 0.6831 
4 11 1.2154 0.8394 
5 21 1.6183 1.0095 
6 44 1.9867 1.1315 
7 92 2.3498 1.2386 
8 191 2.7124 1.3367 
9 393 3.0783 1.4299 

10 810 3.4388 1.5152 
1 1  1662 3.8005 1.5965 
12 3 410 4.1590 1.6729 
13 6 974 4.5187 1.7463 
14 14 262 4.8755 1.8161 
15 29 098 5.2334 1.8836 
16 59 359 5.5889 1.9482 
17 120 873 5.9453 2.01 10 
18 246 098 6.2996 2.0714 
19 500 342 6.6547 2.1303 
20 1017 098 7.0080 2.1873 
21 2065 158 7.3621 2.2430 

Again, we form the Dlog Pad6 approximants of (5)-(7) where the second derivatives 
of the generating function are actually used. In this case, we would expect that the 
critical behaviour might belong to the class of directed self-avoiding walks (DSAWS) 

where the exact exponents are known; i.e. 8 = 0. vll = 1 and uL = 0.5 (Redner and Majid 
1983). Thus, by assuming 0 = 0, we obtain the biased estimates of KO vll and vI from 
the pole-residue plots of (5)-(7). The results are K ,  = 0.4928rt0.005 ( A  = 2.029i 
0.002), vll = 0.990 * 0.02 and v, = 0.495 f 0.025. These results are consistent with the 
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original assumption that the critical behaviour is in the universality class of DSAWS. 

However, in this case the Pad6 approximants show that there exist both defects and 
other non-physical singularities inside the circle of physical singularity. This makes 
the ratio analysis rather difficult. Thus we will not give the results of ratio analysis in 
this case. 

For the case of anisotropic restrictions, the allowed configurations of (U,,, U,) are 
(0, l ) ,  ( l ,O),  (1, 1 )  and (0,2).  In this case, it is easy to show that for N > 4, WN = 
aN +aN-3 where aN is the number of DSAWS of N steps with the above anisotropic 
restrictions. Thus we only have to study the critical properties of DSAWS with anisotropic 
restrictions. This problem can be solved exactly as follows. 

Let x and y be the fugacities of each directed step of the walk in the horizontal 
and vertical directions respectively. If we let f(n,  m) be the number of DSAWS of 
( n  + m) steps ended at site (n, m), the generating function G ( x ,  y )  becomes 

Now we define (A( n, m)) as the average of any (n, m)-dependent function A( n, m )  with 

(12) 
m 

The correlation lengths and in this case become 

5+, Y )  =(Ri(n,  m)) and 5%, y )  = ( R : ( n ,  m)) (13) 

where R&n, m) and R,(n, m) are respectively the horizontal and vertical projections 
of the end vector (n, m) on the preferred axis. The preferred axis is determined by 
the position of the averaged centre of mass which has the coordinates (( n), (m)). Thus 
the preferred axis has an angle Q = tan-’((m)/(n)) relative to the horizontal axis. Let 
the angle between the end vector (n, m) and the horizontal axis be a (n, m) ; then we have 

a(n ,  m) =tan-l(m/n), 

Ri( n, m) = ( n’ + m’) cos’( Q - a), 
R:(n,  m ) = ( n ’ + m * )  sin2(cp-a). 

Substituting (14)-( 16) into (12), after some manipulations, we find 

5 i ( x ,  y )  = (1 +tan’ ~ ) - ’ ( ( n ’ )  +(m’) tan’ Q +2(nm) tan Q ) ,  

( : (x ,  y )  = (1 +tan’ cp)-’((n’) tan2 Q +(m2)-2(nm) tan Q ) .  

(17) 

(18) 

The generating function of ( 1  1) can be evaluated exactly by using the transfer-matrix 
method of Redner and Majid (1983). In our case the transfer matrix T is given by 
(,”:). Thus we have 

1 + x  
G ( x ,  y )  = ( 1  1) (  1 - T)-‘  

Using the relation 

G ( x ,  y) (nim’)  = (x d / d x ) ’ ( y  d/dy) ’G(x,  y )  (20) 
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all the averages ( n ) ,  (m), (n’), ( m 2 )  and ( n m )  can be evaluated using ( 19). After some 
straightforward manipulations, we obtain 

9 (21) 
x3(1-y-xy)+y3(1 +x)6(i  +y+xy)+4y2x2(i + x ) 3  

( 1  +X)[x*+(i +x)4y2j(i -y-xy)2 +, Y )  = 

xy(1 +x)(x+y-x2y)  
53x, y) = [x2+( 1 +x)4y2]( 1 -y  - xy)’ 

tan cp = ( 1  +x)’y/x. (23) 

We can see from (21) and (22) that the critical line is given by 1 - y - xy = 0 and the 
correlation len th exponents are vII = 1 and uI = 1/2. For the special case of x = y = K ,  
we have K,( J% 5 - 1)/2. The number of DSAWS of N steps, uN, can be evaluated through 

N +2 d x = - [ ( l )  1 +(-l)N+’K:+2]. 
J3 Kc 

From (24), we obtain A = 1/ K c  and 8 = 0. Thus we have shown rigorously that in the 
anisotropic case, the U = 2 model has exactly the same critical behaviour as the DSAWS. 

We would like to point out that (24) yields the Fibonnaci sequences (Korn and Korn 
1968) (1,2,3,5,8,  13,. . .) for aN ( N = 0 ,  1,2,3, .  . .). In fact, it is not difficult to show 
that uN satisfies the recursion relation a N + ,  = aN + a N - ’ ,  for N = 0, 1 ,2 , .  . . with a - 1  = 1. 
The relations WN = aN + UN-3 for N > 4 yield the Fibonnaci sequences (16, 
26,42,68,. . .) for WN ( N = 5 , 6 , 7 , .  . .). 

4. Conclusions 

We have studied the restricted valence effects on the critical behaviour of directed site 
lattice animals. Both microscopically isotropic and anisotropic restrictions are con- 
sidered. In the case of U = 3, exact enumerations together with Pad6 and ratio analysis 
indicate that the critical behaviour remains the same as the unrestricted case. In the 
case of U = 2, both series analysis for the isotropic restrictions and exact analysis for 
the anisotropic restrictions show that they belong to the universality class of DSAWS. 
These results also show that the direction of the preferred axis is irrelevant to the 
critical behaviour. All these results are in full agreement with our expectations. 
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